
DRAFT
Cubehelix Explained

Sander Melnikov hey@sandydoo.me

Contents
Introduction . 1
Do we need the helix? . 2
Towards a cubehelix colour space . 2

Lightness . 3
Hue and Saturation . 3
Spinning the hue . 6

Should I use it? . 6
A general solution . 6

Introduction
Cubehelix is a method of generating palettes of colours with a very important
property — a monotonically, or constantly increasing perceived brightness. The
main use-case for such palettes is in data visualisation, where it’s common to
represent ranges of numbers as ordered ranges of colours. But creating colourful
palettes — not just greyscale — that actually look ordered turns out to be more
difficult than simply increasing the overall lightness. I’ll let Dave A. Green, the
original author of the cubehelix scheme, explain the issue in detail:

Images in astronomy often, but not always, represent the intensity of
some source. However, the colour schemes used to display images are
not perceived as increasing monotonically in brightness, which does
not aid the interpretation of the images. The perceived brightness
of red, green and blue are not the same, with green being seen as
the brightest, then red, then blue. For example a bright yellow
(i.e. full intensity red and green) is perceived as being very much
brighter than a bright blue. So if a colour scheme has yellow for
intermediate intensities, but blue or red for higher intensities, then
the blue or red is perceived at lower brightness. This can be also
seen when such colour images are printed in black and white, when
increasing intensity in the image does not correspond to a greyscale
with monotonically increasing brightness.

Unlike other methods of generating perceptually uniform colours, cubehelix isn’t

1

mailto:hey@sandydoo.me

DR
AF

T
a special, unique colour space. It’s based on RGB: red, green, and blue colour
components. To generate a palette, we plot a helix, a spiral, along and around
the diagonal of the RGB cube (it’s namesake). That diagonal is our overall
lightness — a colourless scale of shades of grey, from black to white. The
overall lightness increases, as we sample colours, from darkest to lightest, along
our constructed spiral. And as we rotate in the RGB cube along the spiral,
we rotate in a plane that’s been adjusted for the perceptual brightness of the
individual RGB components. So our spiral isn’t symmetrical. It bows and rises
depending on the hue.

There are a few things we can control about the palette. We can set the satura-
tion of the colours by increasing the amplitude of the helix — its deviation from
the diagonal of the cube, set the range of the palette by specifying how many
times to rotate around the diagonal, and set the first colour of the palette with
the initial directions of the helix.

Do we need the helix?
All right, so we can generate palettes of colours with monotonically increasing
brightness. Our data visualisations now not only look good, but also accurately
convey information. But can we do better? I mean, the helix is a fun concept
and it’s convenient for generating rainbow unicorn palettes, but it lacks precise
control over the palette. Want a palette between two specific shades of blue and
red? Well, good luck fiddling around with the parameters of the spiral until
you, hopefully, get something “close enough”.

Wouldn’t it be nice to be able to interpolate between two specific colours, while
maintaining the same perceived intensity? We already know how to adjust our
red, green, and blue colour components to account for our perception of each
component’s intensity. But the original algorithm only allows us to convert
locations on a helix to RGB components. Can we somehow convert RGB colours
back into this perceptually uniform colour space and make use of it’s beneficial
properties?

Towards a cubehelix colour space
The first people to have had this idea and provide an implementation were Jason
Davies and Mike Bostock, as part the d3 visualisation library back in 2015.
While the code is open-source, it can be difficult to follow for the uninitiated,
and — as far as I know — there is no write up of the mathematics employed in
the solution.

function cubehelixConvert(o) {
if (o instanceof Cubehelix) return new Cubehelix(o.h, o.s, o.l, o.opacity);
if (!(o instanceof Rgb)) o = rgbConvert(o);
var r = o.r / 255,

g = o.g / 255,

2

DRAFT
b = o.b / 255,
l = (BC_DA * b + ED * r - EB * g) / (BC_DA + ED - EB),
bl = b - l,
k = (E * (g - l) - C * bl) / D,
s = Math.sqrt(k * k + bl * bl) / (E * l * (1 - l)), // NaN if l=0 or l=1
h = s ? Math.atan2(k, bl) * degrees - 120 : NaN;

return new Cubehelix(h < 0 ? h + 360 : h, s, l, o.opacity);
}

To really understand what’s going on, we’re going to derive the solution from
scratch. We’ll need a tiny bit of linear algebra, and the rest will be some basic
geometry and algebra.

Lightness

• Lightness — overall brightness of the colours.
• The RGB cube, the diagonal, colourless, overall brightness.
• R, G, and B are three orthogonal vectors. The normal vector to the three

is the diagonal.

Cross product of two vectors

𝑋⃗ = 𝐴𝑟 + 𝐶𝑔 + 𝐸𝑏
⃗𝑌 = 𝐵𝑟 + 𝐷𝑔 + 𝐹𝑏
𝑙 = 𝑋⃗ × ⃗𝑌

𝑙 = (𝐶𝐹 − 𝐷𝐸)𝑟 + (𝐸𝐵 − 𝐴𝐹)𝑔 + (𝐴𝐷 − 𝐵𝐶)𝑏
𝐶𝐹 − 𝐷𝐸 + 𝐸𝐵 − 𝐴𝐹 + 𝐴𝐷 − 𝐵𝐶

Since, in this case, 𝐹 = 0, we can simplify things further.

𝑙 = (𝐴𝐷 − 𝐵𝐶)𝑏 − 𝐷𝐸𝑟 + 𝐸𝐵𝑔
𝐴𝐷 − 𝐵𝐶 − 𝐷𝐸 + 𝐸𝐵

You might have noticed that the code looks a bit different. Bostock and Davies
are computing ⃗𝑌 × 𝑋⃗ instead. Why? I’m not sure. But the cross product is
anti-commutative, meaning that changing the order of the two vectors in the
cross product doesn’t change the result, apart from changing the sign. And since
we’re normalising the whole thing, the final lightness will always be positive. So,
either way is fine.

Hue and Saturation

Here’s where things seem a bit confusing at first. At first glance, s and h
probably stand for “saturation” and “hue”. But what are bl and k? How do
they relate to saturation and hue?

3

DRAFT
We’ve got several clues. The saturation is computed from the square root of the
sum of squares of bl and k. Hold on, that’s the Pythagorean theorem! And the
hue — that’s the angle from the positive 𝑥 axis. So bl and k are the 𝑥 and 𝑦
values in a Euclidean plane, respectively. What is this plane though?

Let’s recall the original RGB transformation.

𝑟 = 𝑙 + 𝛼 (𝐴 cos(ℎ) + 𝐵 sin(ℎ))
𝑔 = 𝑙 + 𝛼 (𝐶 cos(ℎ) + 𝐷 sin(ℎ))
𝑏 = 𝑙 + 𝛼 (𝐸 cos(ℎ))

where 𝛼 = 𝑠 ⋅ 𝑙 ⋅ (1 − 𝑙).
Remember what the definitions of cos(ℎ) and sin(ℎ) are? Our adjacent and
opposite sides are 𝑥 and 𝑦, respectively, and the hypotenuse is the saturation 𝑠.

cos(ℎ) = 𝑥
𝑠

sin(ℎ) = 𝑦
𝑠

Let’s plug these values in,

𝑟 = 𝑙 + (�𝑠 ⋅ 𝑙 ⋅ (1 − 𝑙)) ⋅ (𝐴𝑥
�𝑠

+ 𝐵 𝑦
�𝑠

)

𝑔 = 𝑙 + (�𝑠 ⋅ 𝑙 ⋅ (1 − 𝑙)) ⋅ (𝐶 𝑥
�𝑠

+ 𝐷𝑦
�𝑠

)

𝑏 = 𝑙 + (�𝑠 ⋅ 𝑙 ⋅ (1 − 𝑙)) ⋅ (𝐸 𝑥
�𝑠

)

We get quite lucky here. Not only do all the 𝑠 cancel out, meaning we have
one less unknown in our set of equations, but, since 𝐹 = 0, we can immediately
rearrange equation () to get 𝑥.

(1)
𝑥 = 𝑏 − 𝑙

𝐸 ̃𝛼
where ̃𝛼 = 𝑙 ⋅ (1 − 𝑙).
Now, for the 𝑦, we replace 𝑥 with this definition in equation (??).

4

DRAFT
𝑔 = 𝑙 + ̃𝛼 ⋅ (𝐶

𝐸 ̃𝛼(𝑏 − 𝑙) + 𝐷𝑦)

= 𝑙 + 𝐶
𝐸 (𝑏 − 𝑙) + ̃𝛼𝐷𝑦

𝑦 = 𝑔 − 𝑙 − 𝐶
𝐸 (𝑏 − 𝑙)
̃𝛼𝐷

=
1
𝐸 (𝐸(𝑔 − 𝑙) − 𝐶(𝑏 − 𝑙))

̃𝛼𝐷
= 𝐸(𝑔 − 𝑙) − 𝐶(𝑏 − 𝑙)

𝐸 ̃𝛼𝐷

Fantastic! We’ve got our 𝑥 and 𝑦 coordinates. There’s one more clever thing
we can do, though. Do you see how in the equations for both 𝑥 (??) and 𝑦 ()
we’re dividing by 𝐸 ̃𝛼? We can delay that division and work with scaled 𝑥 and
𝑦 values, as long as we remember to adjust for it later. Division is an expensive
operation for computers to perform, after all.

That way we define ̂𝑥 and ̂𝑦 as:

̂𝑥 = 𝐸 ̃𝛼𝑥 = 𝑏 − 𝑙

̂𝑦 = 𝐸 ̃𝛼𝑦 = 𝐸(𝑔 − 𝑙) − 𝐶(𝑏 − 𝑙)
𝐷

Now our definition for ̂𝑥 matches bl and ̂𝑦 matches k.

Saturation in our HSL space is the distance from (0, 0) to (𝑥, 𝑦). Using Py-
thagoras’s theorem,

𝑠 = √𝑥2 + 𝑦2

= √(̂𝑥
𝐸 ̃𝛼)

2
+ (̂𝑦

𝐸 ̃𝛼)
2

= √ ̂𝑥2 + ̂𝑦2

𝐸 ̃𝛼

Lastly, we can compute the hue using the two-argument inverse tangent function,
remembering to convert from radians to degrees,

ℎ = 𝑎𝑟𝑐𝑡𝑎𝑛2 (̂𝑦, ̂𝑥) ⋅ 180°
𝜋

5

DRAFT
Spinning the hue

Once last thing! Remember how our 𝑥 value (??) was calculated solely from
the blue component of our colour? Well, that means that we’ve rotated our
coordinate space. Typical hue values are set to 0° at red, 120° at green, and
240° at blue. At 0°, our hue is actually blue. So we’ve rotated everything by
120° counter-clockwise, adding 120° to our hue value.

Luckily, there’s a simple fix! We’ll just subtract 120° from our final hue, and
then, when converting back to RGB, make sure to add it back.

ℎ = 𝑎𝑟𝑐𝑡𝑎𝑛2 (̂𝑦, ̂𝑥) ⋅ 180
𝜋 − 120°

Should I use it?
At this point, there’s nothing “cube” or “helix” about this colour space; it’s a
cylindrical HSL colour space that can be converted to “adjusted” RGB values.
People have created many such “adjusted” colour spaces over the years, some
focused on how humans perceive colours, others correcting for the peculiarities
of various display technologies. Each has its own set of pros and cons. This
colour space tries to adjust the RGB components to create a uniform, even
perception of colour intensity — either always increasing, always decreasing, or
staying the same across all hues. That’s the pro. The con is that you might
create impossible or unrepresentable colours: colours with a saturation or light-
ness outside of the range that these values can realistically take. In that case,
the RGB colour components will be clipped — adjusted to the closest max-
imum value —, limiting the range of colours you can use while still maintaining
perceptual uniformity.

A general solution
Our final colour space conversion took advantage of the fact that, for the cube-
helix transformation, the constant 𝐹 is equal to 0. That simplified things for us,
but we can also derive a more general solution, for any 𝐹 . Perhaps, someone
may find this useful.

Let’s start with our set of red, green, and blue colour components. We’ll solve
this system of equations for 𝑥 and 𝑦 using elimination.

𝑟 = 𝑙 + ̃𝛼 (𝐴𝑥 + 𝐵𝑦)
𝑔 = 𝑙 + ̃𝛼 (𝐶𝑥 + 𝐷𝑦)
𝑏 = 𝑙 + ̃𝛼 (𝐸𝑥 + 𝐹𝑦)

𝐷𝑟 = 𝐷𝑙 + ̃𝛼 (𝐴𝐷𝑥 + 𝐵𝐷𝑦)
𝐵𝑔 = 𝐵𝑙 + ̃𝛼 (𝐵𝐶𝑥 + 𝐵𝐷𝑦)

6

DRAFT
𝐷𝑟 − 𝐵𝑔 = 𝐷𝑙 − 𝐵𝑙 + ̃𝛼𝐴𝐷𝑥 − ̃𝛼𝐵𝐶𝑥

𝑥 = 𝐷 (𝑟 − 𝑙) − 𝐵 (𝑔 − 𝑙)
̃𝛼 (𝐴𝐷 − 𝐵𝐶)

𝐸𝑔 = 𝐸𝑙 + ̃𝛼 (𝐶𝐸𝑥 + 𝐷𝐸𝑦)
𝐶𝑏 = 𝐶𝑙 + ̃𝛼 (𝐶𝐸𝑥 + 𝐶𝐹𝑦)

𝐸𝑔 − 𝐶𝑏 = 𝐸𝑙 − 𝐶𝑙 + ̃𝛼𝐷𝐸𝑦 − ̃𝛼𝐶𝐹𝑦

𝑦 = 𝐸 (𝑔 − 𝑙) − 𝐶 (𝑏 − 𝑙)
̃𝛼 (𝐷𝐸 − 𝐶𝐹)

Finally, we have,

𝑥 = 𝐷 (𝑟 − 𝑙) − 𝐵 (𝑔 − 𝑙)
̃𝛼 (𝐴𝐷 − 𝐵𝐶)

𝑦 = 𝐸 (𝑔 − 𝑙) − 𝐶 (𝑏 − 𝑙)
̃𝛼 (𝐷𝐸 − 𝐶𝐹)

ℎ = 𝑎𝑟𝑐𝑡𝑎𝑛2 (𝑦, 𝑥) ⋅ 180°
𝜋

𝑠 = √𝑥2 + 𝑦2

𝑙 = (𝐶𝐹 − 𝐷𝐸) 𝑟 + (𝐸𝐵 − 𝐴𝐹) 𝑔 + (𝐴𝐷 − 𝐵𝐶) 𝑏
𝐶𝐹 − 𝐷𝐸 + 𝐸𝐵 − 𝐴𝐹 + 𝐴𝐷 − 𝐵𝐶

7

	Introduction
	Do we need the helix?
	Towards a cubehelix colour space
	Lightness
	Hue and Saturation
	Spinning the hue

	Should I use it?
	A general solution

